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ABSTRACT
K-mer counting is a widely used fundamental bioinformatics pro-
cess. With next generation sequencing and other advances in se-
quencing techniques, newly generated large sequence datasets de-
mand efficient k-mer counting techniques that are capable of uti-
lizing available resources. We present Quill: a memory-efficient
k-mer counting and a querying tool for commodity clusters. While
existing distributed memory solutions require high-performance
clusters, Quill manages to perform k-mer counting in a conventional
computer cluster without relying on high-performance network
interfaces or parallel file systems. Furthermore, Quill provides an
additional advantage in cases where k-mer counting is required for
multiple k-values in the same dataset. Quill shows a linear scaling
for the k-mer counting stage when tested in a commodity cluster.
The performance gain is more evident when executed with k values
up to 22 and 28. Thus, Quill can be viewed as a cost-effective k-mer
counting solution that can effectively use the combined computing
power of a cluster of commodity-grade computers. Quill is freely
available at https://github.com/CSE-Optimizers/k-mer_counter.

CCS CONCEPTS
• Applied computing→ Bioinformatics.

KEYWORDS
K-mer counting, Performance engineering, Parallel computing, Dis-
tributed computing
ACM Reference Format:
Budvin Edippuliarachchi, DamikaGamlath, RuchinAmaratunga, Gunavaran
Brihadiswaran, and Sanath Jayasena. 2022. Quill: A Memory Efficient k-
mer Counting and k-mer Querying Tool for Commodity Clusters. In 2022
14th International Conference on Bioinformatics and Biomedical Technology
(ICBBT 2022), May 27–29, 2022, Xi’an, China. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3543377.3543389

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICBBT 2022, May 27–29, 2022, Xi’an, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9638-7/22/05. . . $15.00
https://doi.org/10.1145/3543377.3543389

1 INTRODUCTION
K-mer counting is one of the fundamental tasks in bioinformatics.
It is the process of counting the number of occurrences of k length
substrings in a given sequence dataset. K-mer counting is impor-
tant since it is a prerequisite for several bioinformatics processes
including multiple sequence alignment[6], genome assembly[12],
repeat detection[18], and sequence error correction[8, 14].

Although the k-mer counting procedure is a straightforward
process, it has been an interesting research topic since k-mer count-
ing is closely related to performance engineering with parallel
computing. The large size of the datasets and the requirement of
large amount of memory are two of the main challenges in k-mer
counting process. Existing solutions are either optimized for high-
performance clusters or medium to high end single machines. In
this research, we present Quill, a k-mer counting and a k-mer query-
ing tool for commodity clusters. The primary objective of Quill is
to extract the combined computing power and the storage of a
low-cost commodity cluster for k-mer counting rather than relying
on high-performance hardware systems. Furthermore, Quill is de-
signed to efficiently perform k-mer counting for multiple k values
in the same dataset.

1.1 Related Work
Initially, most of the recognized solutions for k-mer counting were
based on shared-memory systems. Jellyfish[16] can be considered
as one of the first recognized k-mer counting tools. Jellyfish effi-
ciently uses CAS instructions to implement a lock-free hash table
for parallel k-mer insertion. KMC1[4] uses disk storage when the
memory is not sufficient to store the k-mers for counting. This is
implemented by categorizing k-mers into bins and dumping them
onto the disk. KMC1 uses prefix-based mapping to assign k-mers
into bins. KMC1 further overlaps I/O overhead and CPU time by
using pipeline architecture. Later KMC2[5] which is the successor
of KMC1, further reduces counting time and intermediate disk us-
age by using a concept called minimizers to categorize k-mers as a
replacement for the prefix-based method in KMC1. KMC3[11], the
successor of KMC2 further optimized KMC2. MSPKmerCounter[13]
was another disk-based k-mer counter that used a method called
Minimum Substring Partitioning (MSP) to map k-mers into par-
titions. MSP uses superkmers to map the k-mers into partitions
without much data duplication for adjacent k-mers. MSP concept
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also inspired the minimizers which are used in KMC2. In all the
disk-based solutions, one of the goals was to design a good mapping
strategy to evenly distribute the k-mers into partitions. Gerbil[7] is
another disk-based k-mer counter that supports GPU acceleration.
Gerbil also uses the minimizer concept and supports k-mer count-
ing for larger k values (k>31). Although initial research was limited
to shared memory solutions later solutions successfully utilized the
combined memory capacity of clusters of computers to address high
memory requirements. Kmerind[17] is a distributed memory-based
solution designed for high-performance parallel k-mer counting
and indexing. Bloomfish[9] is another highly scalable distributed
k-mer counting framework for supercomputing clusters. Bloomfish
is the successor of Jellyfish and is built on top of Mimir[10] which
is an MPI based map-reduce framework.

It is evident from the literature that there is no existing efficient
k-mer counting solution to effectively run on a commodity grade
cluster. Existing distributed memory solutions depend on high-
performance clusters with high-performance networks and parallel
file systems. In this paper, we present Quill, a memory-efficient
k-mer counting and a k-mer querying tool for commodity clusters.
Quill supports DNA sequence datasets in FASTQ format and is ca-
pable of performing k-mer counting up to k=31. Additionally, Quill
is further optimized for cases where k-mer counting is required
for multiple k values in the same dataset. We designed a file com-
paction scheme that supports k-mer counting for multiple k values.
With the optimizations, Quill is capable of using the combined com-
puting power of a commodity cluster to achieve an overall better
performance. Quill can be viewed as a cost-effective k-mer counting
tool that is not dependent on high-end hardware systems. Quill
is written in C++ and freely available at https://github.com/CSE-
Optimizers/k-mer_counter under MIT license.

2 METHODOLOGY
Quill starts the workflow by reading the data file which is stored
at the master node and sending file chunks to counting nodes.
Counting nodes receive file chunks and store them in their local
disks. After that, those chunks are reused to count the k-mers.
K-mers are counted using a binning strategy with hashmap data
structures. A separate tool is designed for k-mer querying purposes.

2.1 NFS Approach
Before coming up with the final solution, Quill was previously
tested and experimented with various approaches. One approach
was to store the data file in an NFS and counting nodes parallelly
read that data file. With the NFS interface, the counting nodes
access the data file with the same file reading procedures used
for accessing local files. One cluster node was used as the NFS.
In this approach, the data file was logically partitioned and those
partitions were statically allocated to counting nodes. Counting
nodes simultaneously access the data file. However, it was observed
that this NFS file reading strategy was not an ideal solution in
terms of scalability. We measured the time taken for reading the
file and for the counting stage. Figure 1 elaborates the results of
this experiment.

Although the counting timewas reduced as expected, the increas-
ing file reading time affected the overall time. This is because the

Figure 1: Poor scalability of NFS file reading

NFS does not provide truly parallel I/O. We further experimented
with different read buffer sizes and also by changing the NFS dae-
mon workers. However, no optimal strategy could be found. Hence
it was decided to limit the file reading to one node.

2.2 Overview of the Solution
With the observations from the NFS approach, we designed the
workflow of Quill with two main phases. The data file is stored at
one node (referred to as the master node). A pipelined workflow
is implemented where possible for the reading, processing, and
writing stages.

• Phase 1 - contains 2 steps
– Distribution - Master node reads from the data file and
simultaneously distributes file chunks to counting nodes.

– Compaction - Counting nodes receive file chunks, compact
them, and store them in local disks

• Phase 2 - also contains 2 steps
– Generation - Counting nodes reuse the previously cre-
ated compact file chunks and generate k-mers. K-mers are
mapped to bins and stored in the local disk.

– Counting - Bins are loaded to memory and k-mers are
counted using hashmap data structures.

The importance of designing with two phases is Quill can be
efficiently used to perform k-mer counting for multiple k values.
For this, phase 1 is needed to be executed only once and phase 2
can be repeated with different k values. This is achieved by reusing
the compact version of the data file generated by phase 1. In the
following sections, we provide a detailed description of each step.

2.3 File Distribution
In the file distribution step, the master node starts reading from the
data file which is stored in its local disk. Specifically, the master
node uses a 2 stage pipeline design, which is illustrated in Figure 2.

The reader thread fetches DNA reads from the file and forms
chunks from them. A chunk will be a maximum of 256KB in size.
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Figure 2: Pipeline at master node for file reading and distri-
bution

Chunks are added to the read chunks queue. Upon receiving chunks,
the distributor thread gets chunks one at a time and sends them to
counting nodes. This communication is implementedwith MPI_Send
and MPI_Recv routines. Counting nodes continuously poll for new
chunks. Upon receiving polling messages, the distributor thread
sends chunks. This procedure works on a first-come-first-serve
(FCFS) basis. Hence the chunks are not statically allocated. Load
across the counting nodes is effectively balanced with the FCFS
strategy. On the other hand, MPI_Scatter could have been another
option to distribute the file chunks. We managed to implement it
and test it as well. However, when MPI_Scatter is used, it results
in more idle time in counting nodes which eventually increases the
total distribution time. This is because rather than waiting to form
a bigger chunk for distribution, it is efficient to distribute smaller
chunks as soon as they are generated by the reader thread in the
master node.

2.4 File Compaction
The motivation for using a compact data file is that it enables Quill
to perform k-mer counting for multiple k values in the same dataset
more efficiently. With the file compaction strategy, the distribution
needs to be done only once when performing k-mer counting for
multiple k values. This method reduces I/O overhead significantly,
especially in commodity-grade clusters. We emphasize this idea in
the results section.

The file compaction process is connected with the distribution
pipeline. The counting nodes receive file chunks from the master
node, compact the DNA reads, and finally write to the local disk.

This is illustrated in Figure 3. The receiver thread handles commu-
nication with the master node. Recall that the counting nodes are
continuously polling for new data chunks. The receiver thread exe-
cutes that polling procedure. Received chunks are stored in the read
chunks queue. The compaction thread pops chunks from this queue
and encodes to a more compact version. Compacted chunks are
sent to the compact chunks queue and the writer thread appends
those chunks to a binary file in the local disk.

Figure 3: Pipeline at counting node for file chunk receiving
and compaction

For the compaction method, we use a 2 step process. First, in the
distribution phase, Quill only distributes the actual DNA reads from
the FASTQ data file. With that, we remove the identifier data and
quality score data. The second step is encoding the remaining DNA
reads to a more compact version. For this, we use a 3-bit encoding
and 32-bit ‘blocks’ to store 3-bit sets.

Quill is designed for FASTQ data files with a DNA alphabet
which contains A, C, G and T as DNA bases and N as undefined or
unidentified bases. We use the following 3-bit encoding for those
characters.

A - 000 C - 001 G - 010 T - 011 N - 100
Since a block is 32 bits, 10 such encoded characters can be stored

in a block. The remaining 2 bits were used as identifier bits. There
are two types of blocks; header blocks and normal blocks. Nor-
mal blocks are the blocks containing the above-mentioned 3-bit
encodings. Header blocks are placed at the start of each read. The
header block contains the size of the read. The first 2 bits are used
as identifiers to distinguish the two types of blocks. Header blocks
contain 11 as the first 2 bits and the normal blocks contain 00 as
the first 2 bits. With this method, if a DNA read has a length of 𝑙 ,
the resulting encoding will have 1 header block and ⌈𝑙/10⌉ number
of normal blocks.

An example of this is provided in Figure 4. In that example, the
length of the read is 83. The header block with identifier bits set
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Figure 4: An example for the 3-bit encoding compaction scheme

to 11 contains the value 83 encoded in binary. Next 9 (= ⌈83/10⌉)
blocks contain the 3-bit encoded characters.

The total compaction ratio can be calculated analytically. In
the distribution stage, the overall size is reduced by at least 50%
by eliminating identifiers and quality scores in the FASTQ file. In
the 3-bit encoding stage, each byte in character is reduced to 3
bits, giving additional 37.5% compaction. The overall compaction is
approximately 50% * 37.5% = 18.75%. However, because of using the
header blocks, the actual value can be within the 17% - 18% range.
With that strategy, we have been able to effectively eliminate 82%
of the original size.

Phase 1 of Quill ends with the compaction step. After phase 1,
each counting node consists of a compacted part of the original data
file. With the available resources in the commodity-grade cluster,
we were able to successfully pipeline phase 1 so that the complete
distribution process completely overlapped with the file reading
overhead. We emphasize this further in the results section.

As we mentioned before, Quill is designed to take advantage of
situations where the k-mer counting is needed for multiple k values.
To facilitate that, phase 1 can be executed once for distribution and
phase 2 can be repeated for different k values. Phase 2 is described
in the following sections.

2.5 K-mer Generation
K-mer generation is the first step in phase 2. An overview of k-mer
generation step is illustrated in Figure 5.

This is also a 3 stage pipeline with reading, processing, and writ-
ing steps. The reader thread reads from the previously generated
compact data file. Chunks from the compact file are added to a
queue. Then the generator thread generates k-mers from those
chunks. In this step, the k-mers are also converted to the canonical
version. A k-mer is encoded into a 32-bit buffer. Each character in
a k-mer is encoded with 2 bits since Quill eliminates the undefined
characters other than A, C, G and T for k-mer counting. For canon-
ical k-mer generation, we use a similar method used in Frigate[3].
It is a moving window strategy to simultaneously generate k-mer

Figure 5: Pipeline at counting node for k-mer generation step

and its reverse complement. For each incoming new character in
the DNA read,

(1) To generate the k-mer
(a) Left shift the current k-mer encoding by 2 bits
(b) Clear the (2k+1)th bit and (2k+2)th bit. (assume 1 based bit

indexing from LSB)
(c) Perform a bitwise OR operation to place the 2-bit encod-

ing of the incoming character in the 1st bit and 2nd bit
positions

(2) To generate the k-mer reverse complement
(a) Right shift the current complement k-mer encoding by 2

bits
(b) Compute the complement character of the incoming char-

acter
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(c) Perform a bitwise OR operation to place the 2-bit encoding
of the computed complement character in the (2k-1)th bit
and 2kth bit positions

After that, each canonical k-mer is mapped to a bin using a
mapper function. The mapper function is designed to distribute
k-mers evenly across bins. We use the following mapper function to
determine the corresponding bin for each k-mer. In this expression,
𝑘𝑚𝑒𝑟 is a bit encoded 32 bit value and𝑚 is the number of bins.

𝑏𝑖𝑛_𝑖𝑑 = (𝑘𝑚𝑒𝑟 >> (𝑘/2)) mod𝑚 (1)

With this mapper functionwewere able to achieve even distribution
with canonical k-mers. Furthermore, we define a maximum size
(𝑠) of a bin. The values of 𝑚 and 𝑠 are determined according to
the available memory in counting nodes. When a size of a bin
exceeds 𝑠 , it is added to the bin instances queue and a new empty
bin is allocated to replace it. The bin writer thread gets bins from
that queue and appends them to the corresponding binary file. For
example, instances of the bin with id ‘2’ are appended to the file
with id ‘2’. After the k-mer generation step, each counting node
contains𝑚 number of binary files with k-mers.

2.6 K-mer Counting
The actual k-mer counting step is the last step in phase 2 of Quill.
K-mer counting step is started when the counting node has finished
the k-mer generation step. K-mer counting step is also a 3 stage
pipeline which is illustrated in Figure 6.

Figure 6: Pipeline at counting node for k-mer counting step

The bin reader thread loads previously created bins containing
k-mers. Bins are added to the bin queue. Recall that, by using a map-
per function each k-mer is uniquely mapped to a bin and no k-mer

is present in multiple bins. Because of that k-mers inside bins can be
counted separately. K-mers in a bin are counted using a hashmap
data structure. Quill uses densehashmap[2] as the hashmap im-
plementation. Furthermore, MurmurHash3[1] is used as the hash
function. We used these configurations inspired by Kmerind. After
a bin is finished with counting, the associated hashmap is sent
to the dump queue and the hashmap writer thread serializes the
hashmaps to files in the local disk. With this pipeline stage, Quill
completes the whole k-mer counting process.

2.7 Querying Tool
Similar to KMC and other k-mer counters, Quill is designed with a
separate tool to fetch the k-mer counting results. Quill is developed
with more focus on k-mer querying similar to distributed querying
in Kmerind. Additionally, Quill is capable of creating a final k-
mer dump as well. For querying, the users can submit a set of
k-mers to the master node. Then the master node distributes all the
query k-mers to all the counting nodes using MPI_Bcast method.
Upon receiving the query k-mers, the counting nodes group them
according to the previously used mapper function. After that, the
necessary hashmaps are identified to query the k-mers. In this phase,
all the hashmaps need not be loaded into the memory. Only the
hashmaps that contain the query k-mers are loaded into thememory
and the counts are fetched locally in each counting node. After that
counts are aggregated to the master node. For this, MPI_Reduce
method is used with MPI_SUM operation. Aggregated results are
returned to the user from the master node.

Apart from that, Quill is capable of generating a k-mer count
dump. For this, hashmaps are merged at the master node. Specifi-
cally, all the hashmaps corresponding to one bin are merged as one
batch. Then the next batch will be merged. Once a batch is finished
merging, the resulting single hashmap is stored in the disk of the
master node.

3 RESULTS
3.1 Experiment Setup
Since Quill targets commodity clusters consisting of low-medium
grade computers, all the experiments were run on a cluster created
using a university computer lab. All the computers were identical
all-in-one PCs with Intel(R) Core(TM) i3-4150 CPU @ 3.50GHz
processor. The CPUs contain 2 physical cores and 2 threads per
core. Each computer contains 4GB SODIMM DDR3 Synchronous
1600 MHz (0.6 ns) memory and the Hard Disk Drive is a 500GB
TOSHIBA MQ01ABF050 with 5400 rpm. All the machines contain
a conventional ext4 file system. NFS v4 was used in the earlier
experiments where NFS was required to access the data file from
all the counting nodes. The computers are connected with 1 Gbps
ethernet without any specialized high-speed networking interfaces.
Experiments were run on Ubuntu 14.04.5 LTS with MPICH v3.4.2
as the MPI implementation. One computer was used as the master
node and all the experiments were initiated from that node. We ex-
ecuted Kmerind, KMC3 and Gerbil to compare with Quill. Kmerind
was initiated from the same master node and that node was used to
run KMC3 and Gerbil as well. Execution time was measured using
the Linux time utility to get the elapsed wall clock time.
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Table 1: Used Datasets

Dataset
name

No. of
bases (109)

FASTQ file
size (GB)

Avg. read
length

No. of
reads

F. vesca 5.2 10.9 405 12,803,137
G. gallus 34.7 108 100 347,395,606
H. sapiens 123.7 292.1 151 819,148,264

3.2 Used Datasets
Referring to the related literature, especially from [15] we selected
3 datasets to evaluate Quill along with the existing k-mer counting
tools. F. vesca, G. gallus and H. sapiens were used as the DNA
sequence datasets. Table 1 contains all the details about the selected
datasets.

Sources for the datasets can be found in the appendix section.

3.3 Execution Time of Quill
Quill was tested for k = 12, 15, 22, and 28 along with different
numbers of cluster nodes. Fig 7 and 8 summarise the execution
time for F. vesca and G. gallus datasets respectively. For any dataset,
the time taken for phase 1, which is distribution and compaction,
is almost the same regardless of the k value and the number of
nodes. With a higher number of nodes, the phase 1 time slightly
increased due to MPI startup time and network overhead but it is
not significant. The reason for this behavior is Quill manages to
completely overlap the distribution and compaction time with the
file reading overhead. The complete phase 1 pipeline is fully utilized
starting from data file reading to writing the compact data file. To
confirm this we measured the time taken only to read the file inside
the master node and it was nearly identical to the phase 1 time.
On the other hand, this can be exploited if the users have a faster
storage device at the master node. We only used a conventional
5400rpm HDD at the master node. If the end-users can use better
storage (i.e. an SSD) only at the master node, the distribution time
can be reduced significantly.

The time taken for phase 2, which is the k-mer generation and
counting phase, is reducing as expected with a higher number of
nodes. This confirms the efficient data parallelism of Quill. On
some occasions, the scaling of phase 2 is better than linear scaling.
We present 2 possible reasons for this superlinear behavior. One
reason is, the percentage of the variance of execution time across
the counting nodes gets reduced with a higher number of nodes. In
other words, the counting time is more equally distributed with a
higher number of nodes. This results in a better overall performance.
The other reason is, with more counting nodes, the allocated data
for a node is less and it can result in a low probability of hash
collisions in the hashmap data structures. It also reduces the overall
execution time.

3.4 K-mer Counting for Multiple K Values
Quill is designed to get the best performance advantage in cases
where k-mer counting is needed for multiple k values in the same
dataset. This was the primary motivation to store an intermediate
compact version of the data file. We present the performance ad-
vantage of this aspect in Figure 9 and Figure 10. For a given dataset

Figure 7: Execution time of Quill (F. vesca)

Figure 8: Execution time of Quill (G. gallus)

and a set of nodes, when performing k-mer counting for multiple
k values, phase 1 is needed to be executed only once. It is denoted
as the distribution time in the figures. Then phase 2, which is the
counting phase, can be repeated with different k values by reusing
the compact files generated by phase 1. Figure 9 and Figure 10 show
the total time for k-mer counting for multiple k values. Time taken
for phase 1 can be justified with the total execution time taken for
k-mer counting for multiple k values. We can observe that total
execution time shows a good scaling with the increasing number of
nodes despite the distribution time being nearly equal. To the best
of our knowledge in the related literature, Quill can be considered
as an efficient solution in this particular use case.
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Figure 9: Execution time of Quill for multiple k values (F.
vesca)

Figure 10: Execution time of Quill for multiple k values (G.
gallus)

3.5 Comparison with Existing Soluions
Quill is directly comparable with existing k-mer counting solutions
which are designed for distributed memory systems. In the litera-
ture, we identified Kmerind and Bloomfish as the current state of
the art in that category. They both are capable of scaling efficiently
with a larger number of cluster nodes. The main important fact
about them is both Kmerind and Bloomfish are designed for high-
performance clusters which are equipped with high-performance
networking hardware and parallel file systems. However, we tested
both of them in our commodity-grade cluster environment. In that
experiment, Kmerind was not able to complete the process. Every
time it stopped with memory assertion errors implying Kmerind
needs a high amount of memory in counting nodes. Even for the

smallest dataset (F. vesca) and with 64 nodes, Kmerind was not
able to utilize the available memory to complete the process. On
the other hand, Bloomfish was not compatible with its underlying
map-reduce framework when compiling in our cluster environ-
ment. However, even if it was successful in compiling, Bloomfish
can be negatively affected by the available hardware in the clus-
ter. Bloomfish relies on parallel file reading from segments in the
file. However, commodity-grade clusters do not possess such sys-
tems. Because of that, Bloomfish is not capable of running in its
ideal parallel file reading pipeline with the available NFS settings
in our cluster. Its performance can be significantly reduced due to
the NFS file reading bottleneck we earlier mentioned. Because of
these reasons and observations, Quill can be considered as one of
a kind k-mer counting solution that is optimized for commodity-
grade computer cluster systems. Quill is capable of extracting the
combined computing power of such a cluster without depending
on expensive high-performance hardware systems. In that aspect,
Quill can be viewed as a cost-effective solution by considering the
available hardware and the scalability performance.

Because of those issues with Kmerind and Bloomfish, we present
a comparison with KMC3 and Gerbil, which are two of the state-
of-the-art solutions developed for shared memory environments.
We present these comparison results only to provide a benchmark
for the hardware and software capabilities of a single computer.
Here we emphasize the fact that while KMC3 and Gerbil are limited
to resources in a single machine, Quill is capable of connecting
the resources in low-grade computers to achieve an overall better
performance. For this experiment, KMC3 and Gerbil were executed
only in the master node. For both KMC3 and Gerbil we present the
results when executed with 4 threads in the master node. Since the
master node contains a 2 core CPU with 2 threads each, 4 thread
configuration provided the best performance for KMC3 and Gerbil.

Table 2: Execution time(in seconds) of K-mer Counters For F.
vesca Dataset

K-value KMC3 Gerbil Quill
n∗=8 n∗=16 n∗=32 n∗=64

12 170 546 386 226 164 151
15 351 487 431 265 177 161
22 304 482 484 281 185 162
28 291 473 487 282 185 162

n∗ - number of nodes

Table 3: Execution time(in seconds) of K-mer Counters For
G. gallus Dataset

K-value KMC3 Gerbil Quill
n∗=8 n∗=16 n∗=32 n∗=64

12 1729 3598 3103 2340 2074 1766
15 2558 3629 3148 2393 2161 1799
22 3353 3567 3598 2505 2168 1846
28 3141 3377 3483 2455 2135 1817

n∗ - number of nodes
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Results are summarized in the Tables 2 and 3. For both datasets,
Quill is capable of achieving a lower execution time than KMC3
and Gerbil when provided with more computing nodes. The effect
is more clear in the larger dataset, G gallus. The only exception is
in the case where k=12 in KMC3. For such lower k values, KMC3
uses an in-memory algorithm which is obviously better than the
disk-based approach. In all other cases, Quill manages to achieve a
significantly better execution time with more nodes added to the
cluster. To achieve a similar scaling behavior, KMC3 and Gerbil
require a much better processor with a larger number of cores and
also a much large memory in a single machine. However end-users
do not always possess such systems but they might have access to a
network of much lower grade computers, similar to a computer lab.
Quill is designed specifically for such use cases. In that sense, we
emphasize the fact that Quill is capable of combining a set of low-
performance computers to achieve an overall better performance
rather than relying on high-end hardware systems.

We also present these results viewed in another perspective
where k-mer counting is required for multiple k values in the same
dataset. Recall that phase 1 should be executed only once in such
cases.

The advantage is much clear with the comparison in the Figure
11 and Figure 12. While KMC3 and Gerbil are required to restart
the whole pipeline when counting for multiple k values, Quill is
capable of reusing the compact data file which is generated in phase
1.

Figure 11: Comparison of Quill with KMC3 and Gerbil for
multiple k values (F. vesca)

4 CONCLUSION
In this paper, we presented Quill; a memory-efficient k-mer count-
ing and a k-mer querying tool for commodity cluster environments.
Quill can be considered as a new strategy for utilizing hardware
for k-mer counting since all the available k-mer counting tools for
distributed memory systems are optimized for high-performance
clusters only. Quill does not rely on specialized network interfaces

Figure 12: Comparison of Quill with KMC3 and Gerbil for
multiple k values (G. gallus)

or parallel file systems. Because of that, Quill can be viewed as a
more cost-effective solution that can be used in usual computer lab
environments. Quill is capable of linear performance scaling for the
counting stage with efficient data parallelism across cluster nodes.
With a lowmemory of 4GB in each node, Quill is capable of utilizing
the full pipeline in the distribution and counting stages. Further-
more, Quill is more suitable for use cases where k-mer counting is
required for multiple k values in the same dataset. The compact data
file which is generated using the compaction technique facilitates
counting for multiple k-values without incurring repeated I/O over-
head times. Currently, Quill supports k-mer counting up to k=31.
We plan to improve Quill to support higher k values. Furthermore,
we intend to improve the data distribution stage with a hierarchical
design in the cluster environment.
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A APPENDIX
A.1 Datasets
The datasets were downloaded from the following sources.

F. vesca
http://www.ebi.ac.uk/ena/data/view/SRX030576
(SRR072006, SRR072007)
http://www.ebi.ac.uk/ena/data/view/SRX030575
(SRR072005, SRR072010, SRR072011, SRR072012)
http://www.ebi.ac.uk/ena/data/view/SRX030577
(SRR072008, SRR072009)
http://www.ebi.ac.uk/ena/data/view/SRX030578
(SRR072013, SRR072014, SRR072029)

G. gallus
https://www.ebi.ac.uk/ena/data/view/SRX043656
(SRR105788, SRR105789, SRR105792, SRR105794, SRR197985, SRR197986)

H. sapiens

https://dnanexus-rnd.s3.amazonaws.com/NA12878-xten/reads/NA12-
878D_HiSeqX_R1.fastq.gz
https://dnanexus-rnd.s3.amazonaws.com/NA12878-xten/reads/NA12-
878D_HiSeqX_R2.fastq.gz

A.2 Experimental Results of Quill

Table 4: Execution time for all the experiments

Dataset k n∗
Phase 1
time

(seconds)

Phase 2
time

(seconds)

Total
time

(seconds)

F. vesca 12 8 135 251 386
F. vesca 12 16 136 90 226
F. vesca 12 32 136 28 164
F. vesca 12 64 137 14 151
F. vesca 15 8 135 296 431
F. vesca 15 16 136 129 265
F. vesca 15 32 136 41 177
F. vesca 15 64 137 24 161
F. vesca 22 8 135 349 484
F. vesca 22 16 136 145 281
F. vesca 22 32 136 49 185
F. vesca 22 64 137 25 162
F. vesca 28 8 135 352 487
F. vesca 28 16 136 146 282
F. vesca 28 32 136 49 185
F. vesca 28 64 137 25 162
G. gallus 12 8 1600 1503 3103
G. gallus 12 16 1602 738 2340
G. gallus 12 32 1622 452 2074
G. gallus 12 64 1598 168 1766
G. gallus 15 8 1600 1548 3148
G. gallus 15 16 1602 791 2393
G. gallus 15 32 1622 539 2161
G. gallus 15 64 1598 201 1799
G. gallus 22 8 1600 1998 3598
G. gallus 22 16 1602 903 2505
G. gallus 22 32 1622 546 2168
G. gallus 22 64 1598 248 1846
G. gallus 28 8 1600 1883 3483
G. gallus 28 16 1602 853 2455
G. gallus 28 32 1622 513 2135
G. gallus 28 64 1598 219 1817
H. sapiens 12 32 2993 1331 4324
H. sapiens 12 64 3008 787 3795
H. sapiens 15 32 2993 1598 4591
H. sapiens 15 64 3008 837 3845
H. sapiens 22 32 2993 1906 4899
H. sapiens 22 64 3008 930 3938
H. sapiens 28 32 2993 1697 4690
H. sapiens 28 64 3008 934 3942
n∗ - number of nodes
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A.3 Commands Used for Other Tools
• KMC3
time ./kmc -k12 -m4 vesca.fastq ves_12.res tmp/
time ./kmc -k15 -m4 vesca.fastq ves_15.res tmp/
time ./kmc -k22 -m4 vesca.fastq ves_22.res tmp/
time ./kmc -k28 -m4 vesca.fastq ves_28.res tmp/
time ./kmc -k12 -m4 gallus.fastq ves_12.res tmp/
time ./kmc -k15 -m4 gallus.fastq ves_15.res tmp/
time ./kmc -k22 -m4 gallus.fastq ves_22.res tmp/
time ./kmc -k28 -m4 gallus.fastq ves_28.res tmp/
time ./kmc -k12 -m4 sapiens.fastq ves_12.res tmp/
time ./kmc -k15 -m4 sapiens.fastq ves_15.res tmp/
time ./kmc -k22 -m4 sapiens.fastq ves_22.res tmp/
time ./kmc -k28 -m4 sapiens.fastq ves_28.res tmp/

• Gerbil
time ./gerbil -k 12 -e 4GB -t 4 -l 2 vesca.fastq tmp/ out

time ./gerbil -k 15 -e 4GB -t 4 -l 2 vesca.fastq tmp/ out
time ./gerbil -k 22 -e 4GB -t 4 -l 2 vesca.fastq tmp/ out
time ./gerbil -k 28 -e 4GB -t 4 -l 2 vesca.fastq tmp/ out
time ./gerbil -k 12 -e 4GB -t 4 -l 2 gallus.fastq tmp/ out
time ./gerbil -k 15 -e 4GB -t 4 -l 2 gallus.fastq tmp/ out
time ./gerbil -k 22 -e 4GB -t 4 -l 2 gallus.fastq tmp/ out
time ./gerbil -k 28 -e 4GB -t 4 -l 2 gallus.fastq tmp/ out
time ./gerbil -k 12 -e 4GB -t 4 -l 2 sapiens.fastq tmp/ out
time ./gerbil -k 15 -e 4GB -t 4 -l 2 sapiens.fastq tmp/ out
time ./gerbil -k 22 -e 4GB -t 4 -l 2 sapiens.fastq tmp/ out
time ./gerbil -k 28 -e 4GB -t 4 -l 2 sapiens.fastq tmp/ out

• Kmerind
Used the example driver code provided in the repository.
https://github.com/ParBLiSS/kmerind/blob/master/test/ben-
chmark/BenchmarkKmerIndex.cpp
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